Growth hormone ( GH) or somatotropin, also known as human growth hormone ( hGH or HGH) in its human form, is a peptide hormone that stimulates growth, cell reproduction, and cell regeneration in humans and other animals. It is thus important in human development. GH also stimulates production of insulin-like growth factor 1 (IGF-1) and increases the concentration of glucose and free fatty acids. It is a type of mitogen which is specific only to the receptors on certain types of cells. GH is a 191-amino acid, single-chain polypeptide that is synthesized, stored and secreted by somatotropic cells within the lateral wings of the anterior pituitary gland.
A recombinant DNA form of HGH called somatropin (INN) is used as a prescription drug to treat children's growth disorders and adult growth hormone deficiency. In the United States, it is only available legally from pharmacies by prescription from a licensed health care provider. In recent years in the United States, some health care providers are prescribing growth hormone in the elderly to increase vitality. While legal, the efficacy and safety of this use for HGH has not been tested in a clinical trial. Many of the functions of HGH remain unknown.
In its role as an anabolic agent, HGH has been used by competitors in sports since at least 1982 and has been banned by the IOC and NCAA. Traditional urine analysis does not detect doping with HGH, so the ban was not enforced until the early 2000s, when that could distinguish between natural and artificial HGH were starting to be developed. Blood tests conducted by WADA at the 2004 Olympic Games in Athens, Greece, targeted primarily HGH. Use of the drug for performance enhancement is not currently approved by the FDA.
GH has been studied for use in raising livestock more efficiently in industrial agriculture and several efforts have been made to obtain governmental approval to use GH in livestock production. These uses have been controversial. In the United States, the only FDA-approved use of GH for livestock is the use of a cow-specific form of GH called bovine somatotropin for increasing milk production in dairy cows. Retailers are permitted to label containers of milk as produced with or without bovine somatotropin.
The term growth hormone has been incorrectly applied to refer to Anabolism sex hormones in the European beef hormone controversy, which initially restricts the use of estradiol, progesterone, testosterone, zeranol, melengestrol acetate and trenbolone acetate.
Several molecule isoforms of GH exist in the pituitary gland and are released to blood. In particular, a variant of approximately 20 kDa originated by an alternative splicing is present in a rather constant 1:9 ratio, while recently an additional variant of ~ 23-24 kDa has also been reported in post-exercise states at higher proportions. This variant has not been identified, but it has been suggested to coincide with a 22 kDa glycosylated variant of 23 kDa identified in the pituitary gland. Furthermore, these variants circulate partially bound to a protein (growth hormone-binding protein, GHBP), which is the truncated part of the growth hormone receptor, and an acid-labile subunit (ALS).
Somatotropic cells in the anterior pituitary gland then synthesize and secrete GH in a pulsatile manner, in response to these stimuli by the hypothalamus.
The largest and most predictable of these GH peaks occurs about an hour after onset of sleep with plasma levels of 13 to 72 ng/mL.
Maximal secretion of GH may occur within minutes of the onset of slow-wave sleep (SW) sleep (stage III or IV). Otherwise there is wide variation between days and individuals. Nearly fifty percent of GH secretion occurs during the third and fourth NREM sleep stages.
Surges of secretion during the day occur at 3- to 5-hour intervals. The plasma concentration of GH during these peaks may range from 5 to even 45 ng/mL.
Between the peaks, basal GH levels are low, usually less than 5 ng/mL for most of the day and night. Additional analysis of the pulsatile profile of GH described in all cases less than 1 ng/ml for basal levels while maximum peaks were situated around 10-20 ng/mL.
A number of factors are known to affect GH secretion, such as age, sex, diet, exercise, stress, and other hormones. Young adolescents secrete GH at the rate of about 700 μg/day, while healthy adults secrete GH at the rate of about 400 μg/day.
Stimulators of growth hormone (GH) secretion include:
Inhibitors of GH secretion include:
In addition to control by endogenous and stimulus processes, a number of foreign compounds ( such as drugs and endocrine disruptors) are known to influence GH secretion and function.
Increased height during childhood is the most widely known effect of GH. Height appears to be stimulated by at least two mechanisms:
In addition to increasing height in children and adolescents, growth hormone has many other effects on the body:
Prolonged GH excess thickens the bones of the jaw, fingers and toes, resulting in heaviness of the jaw and increased size of digits, referred to as acromegaly. Accompanying problems can include sweating, pressure on nerves (e.g., carpal tunnel syndrome), muscle weakness, excess sex hormone-binding globulin (SHBG), insulin resistance or even a rare form of type 2 diabetes, and reduced sexual function.
GH-secreting tumors are typically recognized in the fifth decade of life. It is extremely rare for such a tumor to occur in childhood, but, when it does, the excessive GH can cause excessive growth, traditionally referred to as gigantism.
Surgical removal is the usual treatment for GH-producing tumors. In some circumstances, focused radiation or a GH antagonist such as pegvisomant may be employed to shrink the tumor or block function. Other drugs like octreotide (somatostatin agonist) and bromocriptine (dopamine agonist) can be used to block GH secretion because both somatostatin and dopamine negatively inhibit GHRH-mediated GH release from the anterior pituitary.
Adults with GHD "tend to have a relative increase in fat mass and a relative decrease in muscle mass and, in many instances, decreased energy and quality of life".
Diagnosis of GH deficiency involves a multiple-step diagnostic process, usually culminating in GH stimulation tests to see if the patient's pituitary gland will release a pulse of GH when provoked by various stimuli.
One version of rHGH has also been FDA approved for maintaining muscle mass in wasting due to AIDS.
Claims for GH as an anti-aging treatment date back to 1990 when the New England Journal of Medicine published a study wherein GH was used to treat 12 men over 60. At the conclusion of the study, all the men showed statistically significant increases in lean body mass and bone mineral density, while the control group did not. The authors of the study noted that these improvements were the opposite of the changes that would normally occur over a 10- to 20-year aging period. Despite the fact the authors at no time claimed that GH had reversed the aging process itself, their results were misinterpreted as indicating that GH is an effective anti-aging agent. This has led to organizations such as the controversial American Academy of Anti-Aging Medicine promoting the use of this hormone as an "anti-aging agent".
A Stanford University School of Medicine meta-analysis of clinical studies on the subject published in early 2007 showed that the application of GH on healthy elderly patients increased muscle by about 2 kg and decreased body fat by the same amount. However, these were the only positive effects from taking GH. No other critical factors were affected, such as bone density, cholesterol levels, lipid measurements, maximal oxygen consumption, or any other factor that would indicate increased fitness. Researchers also did not discover any gain in muscle strength, which led them to believe that GH merely let the body store more water in the muscles rather than increase muscle growth. This would explain the increase in lean body mass.
GH has also been used experimentally to treat multiple sclerosis, to enhance weight loss in obesity, as well as in fibromyalgia, heart failure, Crohn's disease and ulcerative colitis, and burns. GH has also been used experimentally in patients with short bowel syndrome to lessen the requirement for intravenous total parenteral nutrition.
In 1990, the US Congress passed an omnibus crime bill, the Crime Control Act of 1990, that amended the Federal Food, Drug, and Cosmetic Act, that classified anabolic steroids as controlled substances and added a new section that stated that a person who "knowingly distributes, or possesses with intent to distribute, human growth hormone for any use in humans other than the treatment of a disease or other recognized medical condition, where such use has been authorized by the Secretary of Health and Human Services" has committed a felony.Mannfred A. Hollinger. Introduction to Pharmacology, Third Edition. CRC Press, 2002 p. 376
The Drug Enforcement Administration of the US Department of Justice considers off-label prescribing of HGH to be illegal, and to be a key path for illicit distribution of HGH. This section has also been interpreted by some doctors, most notably the authors of a commentary article published in the Journal of the American Medical Association in 2005, as meaning that prescribing HGH off-label may be considered illegal. And some articles in the popular press, such as those criticizing the pharmaceutical industry for marketing drugs for off-label use (with concern of ethics violations) have made strong statements about whether doctors can prescribe HGH off-label: "Unlike other prescription drugs, HGH may be prescribed only for specific uses. U.S. sales are limited by law to treat a rare growth defect in children and a handful of uncommon conditions like short bowel syndrome or Prader-Willi syndrome, a congenital disease that causes reduced muscle tone and a lack of hormones in sex glands." At the same time, anti-aging clinics where doctors prescribe, administer, and sell HGH to people are big business. In a 2012 article in Vanity Fair, when asked how HGH prescriptions far exceed the number of adult patients estimated to have HGH-deficiency, Dragos Roman, who leads a team at the FDA that reviews drugs in endocrinology, said "The F.D.A. doesn't regulate off-label uses of H.G.H. Sometimes it's used appropriately. Sometimes it's not."
One survey of adults that had been treated with replacement cadaver GH (which has not been used anywhere in the world since 1985) during childhood showed a mildly increased incidence of colon cancer and prostate cancer, but linkage with the GH treatment was not established.
Athletes in many sports have used human growth hormone in order to attempt to enhance their athletic performance. Some recent studies have not been able to support claims that human growth hormone can improve the athletic performance of professional male athletes. Many athletic societies ban the use of GH and will issue sanctions against athletes who are caught using it. However, because GH is a potent endogenous protein, it is very difficult to detect GH doping. In the United States, GH is legally available only by prescription from a medical doctor.
The use of GH in poultry farming is illegal in the United States. Similarly, no chicken meat for sale in Australia is administered hormones.
Several companies have attempted to have a version of GH for use in pigs (porcine somatotropin) approved by the FDA but all applications have been withdrawn.
Prior to its production by recombinant DNA technology, growth hormone used to treat deficiencies was extracted from the of . Attempts to create a wholly synthetic HGH failed. Limited supplies of HGH resulted in the restriction of HGH therapy to the treatment of idiopathic short stature.
In 1985, unusual cases of Creutzfeldt–Jakob disease were found in individuals that had received cadaver-derived HGH ten to fifteen years previously. Based on the assumption that infectious prions causing the disease were transferred along with the cadaver-derived HGH, cadaver-derived HGH was removed from the market.
In 1985, biosynthetic human growth hormone replaced pituitary-derived human growth hormone for therapeutic use in the U.S. and elsewhere.
As of 2005, recombinant growth hormones available in the United States (and their manufacturers) included Nutropin (Genentech), Humatrope (Lilly), Genotropin (Pfizer), Norditropin (Novo Nordisk), and Saizen (Merck Serono). In 2006, the U.S. Food and Drug Administration (FDA) approved a version of rHGH called Omnitrope (Sandoz). A sustained-release form of growth hormone, Nutropin Depot (Genentech and Alkermes) was approved by the FDA in 1999, allowing for fewer injections (every 2 or 4 weeks instead of daily); however, the product was discontinued by Genentech/Alkermes in 2004 for financial reasons (Nutropin Depot required significantly more resources to produce than the rest of the Nutropin line In 2023, the FDA approved a different sustained-release form of growth hormone, Sogroya® (somapacitan-beco) (Novo Nordisk) for both pediatric patients (2.5 years and older) and adult patients, whom have growth failure due to inadequate secretion of endogenous growth hormone (rHGH). Previously, the human growth hormone analog had only been approved for adult patients with growth hormone deficiency (AGHD). ).
Nomenclature
Biology
Gene
Structure
Regulation
Function
Biochemistry
Clinical significance
Excess
Deficiency
Psychological effects
Quality of life
Cognitive function
Medical uses
Replacement therapy
Other approved uses
Off-label use
Side effects
Performance enhancement
Dietary supplements
Agricultural use
Drug development history
Analogues
See also
External links
|
|